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In order to identify modal parameters with uncertain experimental data, a non-
deterministic identi"cation method based on fuzzy formalism is proposed. The aim is to
provide a degree of con"dence in the modal parameters identi"ed.
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1. INTRODUCTION

A structure's modal parameters can be determined by an analytical or experimental
approach. The results of the two methods show di!erences that can be attenuated by modal
updating techniques. In the traditional modal updating approach, the experimental data is
considered to be error free with the totality of the error said to come from the model. This
hypothesis is obviously erroneous because, whether identi"ed or not, there are several
sources of error in experimentation [1].

It is therefore important to take the restrained imperfection in the experimental modal
parameters into account. First of all, the uncertainty of these parameters can be introduced
into the modal updating process [2].

Another approach, which is proposed here, deals with the uncertainty earlier in the
correction model process. The uncertainty is directly introduced into the experimental data
(FRFs) in order to take it into account from the identi"cation phase. The aim is also to
provide a degree of con"dence in the modal parameters identi"ed.

Generally, imprecision is dealt with by stochastic approaches and in particular by
Monte-Carlo simulations (MCS) [3}5]. Although these simulations are expensive in terms
of CPU time, they are still the reference.

It is proposed to model uncertainties by fuzzy formalism [6] because it enables notions
such as imprecision and uncertainty to be spread to more detailed descriptions such as
vague, incomplete or linguistic quantities.

The development of the identi"cation method is based on the LMA curve-"tting
method [7].

After a brief theoretical review of this method, the uncertain experimental data
modelled with fuzzy numbers is presented. This modelling will help to solve a non-linear
system with fuzzy complex coe$cients. Several solving techniques are discussed before
proposing a method based on a "rst order Taylor development. Finally, the approach
is illustrated with an academic test which, despite not re#ecting a realistic situation,
validates the method. The applied results are compared to those given by a Monte-Carlo
approach.
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2. DETERMINISTIC METHOD BASIS

According to the superposition modal principle, the response expression y(t) of a forced
harmonic excitation is given by:
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This response is written on the n complex eigenvectors wl (with w1 l and s6 l the conjugated)
of the damped structure. The eigenvalues sl are complex too and are expressed as
sl"!alwl#jwl with al the eigendamping and wl the eigenfrequency of the associated
conservative structure.

Modes are identi"ed by working in a frequency interval that contains either one isolated
mode or several neighbouring modes. The approximate dynamic response implicating the
n included modes involved in this frequency interval is given by

y+u#( jw)v#
n
+
l/1

wlwtl
( jw!sl)

f, (2)

where u and v are an additional linear contribution representing the e!ect of modes outside
the frequency interval studied. The curve-"tting technique principle then consists in "nding
for each sensor i, the (2n#2) parameters q
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when y
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) is the measured response on kth frequency in sensor i and tli"wliw tl f.

After "rst order linearization, a linear over-determined system which has unknown
complex values is solved. The least-squares solution is given by
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This system is solved by iteration for each sensor until convergence of the (2n#2)
q
j
parameters.

3. UNCERTAINTY MEASURE MODELLING

The previous identi"cation principle is a deterministic calculation exploiting the FRFs.
However, in practice, the test conditions cannot generally be reproduced. So, in several sets
of experimental tests, one observes in the FRFs a mode position shift in amplitude as much
as in frequency. To take this shifting into account, it is proposed to model amplitudes and
frequencies measured with fuzzy numbers.

This modelling is presented below on the measured response y
i
and frequencies w

k
.

3.1. FREQUENCIES UNCERTAINTY

The eigenfrequencies shifting observed in a FRF set is taken into account by introducing
uncertainty into the measured frequencies (Figure 1).



Figure 1. Frequency uncertainty representation for k"0: *, measured response; - - -, minimal response; } ) } )
maximal response.

Figure 2. Fuzzy frequency wJ a
k
.

FUZZY MODAL PARAMETERS 799
The uncertainty in measured frequencies is modelled by a fuzzy triangular number as
shown in Figure 2.

The fuzzy frequency w8 a
k

is described by its membership function k (k3[0; 1]) which is
de"ned by levels called a-cuts [8]. The interval of con"dence [wa

k,L
; wa

k,R
] (L for left and

R for right) is associated with each a-cut. The crisp value w
kc

corresponds to the
measurement and boundaries [w

k,L
; w

k,R
] are obtained by uncertainty estimation on the

measured frequencies.
For a fuzzy triangular number, the interval [wa

k,L
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k,R
] at the a-cut is given by:
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where e
w,L

and e
w,R

are the lower and upper percentages representative of the estimated
error on the measured frequency. Na is the number of a-cuts.

3.2. RESPONSE UNCERTAINTY

A fuzzy number for each sensor and each frequency using the same principle models the
uncertain measured response. This modelling replicates the amplitude shifting observed on
the FRFs set (Figure 3).



Figure 3. Amplitude uncertainty representation for k"0:*, measured response; - - -, minimal response; } ) } ),
maximal response.
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In the same way as in equation (5), the fuzzy response yJ a
i

of the sensor i is expressed by:
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where e
y,L

and e
y,R

are the lower and upper percentages representative of the estimated error
on the measured response. Na is the number of a-cuts and y

ic
the crisp value results of the

measurement.

4. PROBLEMATICS

Equation (3) is taken again but this time the FRFs are considered uncertain. The (2n#2)
fuzzy parameters qJ a

j
are therefore found which minimize the following expression:
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to solve the fuzzy system after linearization as in equation (4):
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This system is an interval system with fuzzy complex coe$cients. Various solutions are
proposed and discussed.

4.1. SUCCESSIVE DETERMINISTIC SOLUTIONS

An initial simple approach to implement consists in solving the system (8) independently
of each a-cut. A left-deterministic identi"cation (for ya

L
, wa

L
) and a right-deterministic

identi"cation (for ya
R
, wa

R
) is achieved for each a-cut as described in section 2. The



Figure 4. Successive deterministic solutions.
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interval [qa
j,L

, qa
j,R

] is associated with each solution set on an a-cut. The fuzzy vector qJ a
j
is

obtained by taking into account all a-cuts according to the algorithm in Figure 4.
This method has two major disadvantages. It does not always respect either the convexity

criteria or the order relation between the left and the right boundaries. These problems are
due to the fact that left and right solutions are independent of the a-cuts. Besides, solutions
for a given a-cut do not necessarily exist.

4.2. FUZZY ARITHMETIC APPLICATION

A second approach consists in using fuzzy numbers arithmetic in order to directly solve
the fuzzy system (8). Traditionally, the interval system solution is given by the vertex
method [9], which uses the &&min'' and &&max'' operators (see Appendix A). The application
of this method therefore gives rise to some problems.

First of all, the fuzzy matrix A3 a contains by constructions mixed fuzzy numbers, i.e., fuzzy
numbers containing zero. The vertex method is not adapted to fuzzy operations on mixed
fuzzy numbers because it generates discontinuities for some arithmetical operations as
shown for the fuzzy division in the following example.
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Figure 5 shows that the division on mixed fuzzy numbers de"ned by the vertex method
generates discontinuity on the zero.



Figure 5. Operations on mixed fuzzy numbers: the vertex method.

Figure 6. Illustration of the perturbation principle.
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Otherwise, the system (8) is a complex system. It is therefore impossible to use the &&min''
and &&max'' operators of the vertex method because there is no order relation in C.

A solution consists in using the perturbation principle to de"ne fuzzy complex
arithmetical operations (see Appendix B). The perturbation principle (Figure 6) consists in
writing fuzzy numbers X3 a for each a-cut as a variation (perturbation) in relation to its crisp
value X

c
as
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The fuzzy arithmetical operations can then be de"ned. The application to the example in
Figure 5 gives the following solutions:
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Figure 7. Operations on mixed fuzzy numbers: perturbation principle.
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Figure 7 shows that operations on mixed fuzzy numbers de"ned by the perturbation
method give convex solutions.

For fuzzy complex numbers, the fuzzy number will be broken up according to its real and
imaginary parts as

Z3 a"A3 a#jB3 a"(A
c
#DaA)#j(B

c
#DaB). (12)

One can then de"ne all arithmetical operations on fuzzy complex numbers from this
formulation and construct the system (8) components A3 a and b3 a.

This system is solved by an iterative method. However, iterative schemes coupled with the
fuzzy operations de"ned by the perturbation method generate problems on fuzzy number
supports. Indeed evolution of the fuzzy numbers support is exponential during iterations.
The fuzzy number support is its width interval base (for k"0). The parameter's vector
solution is also over-estimated.

In the light of these problems, an approach is proposed that uses the analogy between the
perturbation principle and the "rst order Taylor development.

5. THE DIFFERENTIATION METHOD

5.1. PRINCIPLE

The writing formulation analogy between the perturbation principle and the "rst order
Taylor development is described here.

For a given function f (x), according to the perturbation principle, the fuzzy function
fI a associated with the fuzzy number x8 a is written as follows:

fI a"f
c
#Da f. (13)

The "rst order development of the function f (x) around the point x
0

is expressed by:
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The formulations (13) and (14) for x
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5.2. SOLVING THE SYSTEM

It is proposed here to use this analogy to solve the fuzzy identi"cation problem. The
method consists of writing the fuzzy function (7) as the "rst order development of the
deterministic function (3) according to the uncertain parameters around their crisp values
(deterministic).
The uncertain parameters are the measured responses y8 a

i
; the measured frequencies
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The perturbation principle (13) analogy gives
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This system is solved in two stages. First of all, equation (17) is solved which corresponds to
the deterministic calculation shown in section 2. The solution gives the crisp values of the
q8 a
j

parameters.
Equation (18) solution then determines the parameters' variations Daq

j
. As this system is

linear, it is solved in as much time as there are a-cuts.
For each sensor i, the equation system (18) formulation is:
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which gives

ADaq
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The matrix A and intervals' vector Dab are constructed from parameters q8 a
j

crisp values
identi"ed previously by the solution of equation (17) and variations Day

i
and Daw

k
representing measurement uncertainty as de"ned in section 3. This system (20) is an
over-determinate complex system with Daq
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and Dab intervals' vectors.

To be able to solve the system, it is broken up according to its real and imaginary parts.
According to the perturbation principle, the system can be written as
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The interval calculation gives the parameters' variations Daq
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solution of this new real

intervals' system. For each a-cut one solves
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Fuzzy parameters q8 a
j
are constructed with the crisp values q

jc
, solution of system (17) and

the variations Daq
j
, solution of system (22) as
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One then knows the fuzzy complex eigenvalues s8 al and the fuzzy eigenvectors w3 ali.
It is therefore possible to quantify uncertainty and also provide a degree of con"dence

from these identi"ed parameters with operators such as area, entropy or speci"city [10].

5.3. ALGORITHM

Figure 8 presents the algorithm used.



Figure 8. Algorithm.
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6. APPLICATION

The proposed method is applied to identify the uncertain modal parameters of
a mechanical system with three degrees of freedom (Figure 9).

There are FRFs from three sensors to proceed to the mode identi"cation of this structure.
These FRFs show the presence of three modes (Figure 10).

The uncertainity measurement is considered here by the FRFs shifting in amplitudes as
much as in frequencies. These uncertainties are modelled with fuzzy numbers as shown in
section 3. The lower and upper estimations of error percentage is 20% on amplitudes and
0)5% on frequencies.

Tables 1}3 present the defuzzi"ed eigensolutions (eigenfrequencies, eigendamping and
eigenvectors), a result of the fuzzy identi"cation for the three identi"ed modes. These results
are then compared with the theoretical eigensolutions and the mean values of a MCS.

Since fuzzy numbers are symmetrical around their crisp value, defuzzi"ed numbers
correspond to those crisp values.

Assuming Gaussian distributions, results from Monte-Carlo analysis are characterized
by their mean value and standard deviation (m, p). The interval [m!3p;m#3p] represents
an interval of con"dence of 97)5%. The associated fuzzy number is also de"ned as shown in
Figure 11, the crisp value is given by the mean value m and the boundaries by
[m#Dm

L
; m#Dm

R
] with Dm

L
"!3p and Dm

R
"3p.

Generally, CPU time cost is in favour of fuzzy arithmetic. For fuzzy arithmetic, the
CPU time depends on the number of a-cuts and as an example with symmetrical triangular
fuzzy numbers, two a-cuts are su$cient (one for the crisp value and one for the
boundaries). This needs only a deterministic and two variations calculus. But if one wants
a good discretization of the shape function (n shape for example), the number of a-cuts
must be notably increased and CPU time too. For MCS, the CPU time depends on the



Figure 9. Test structure M1"6 Kg; M2"0)5 Kg; M3"0)08 Kg; K1"1]106 N/m; K2"1)3]104 N/m;
K3"2]104 N/m; K4"1)1]104 N/m; K5"500 N/m; C1"0)7 Ns/m; C2"0)4 Ns/m; C3"0)7 Ns/m.

Figure 10. FRFs test structure: *, sensor 1; - - -, sensor 2; } ) } ), sensor 3.

TABLE 1

First-mode eigenvalues

Mode 1 Theoretical values Defuzzi"ed values MCS means values

Frequency 36)94 Hz 36)936 Hz 36)935 Hz
Damping 0)851% 0)851% 0)880%
Vector sensor 1 0)758E-03!0)731E-03i 0)757E-03!0)732E-03i 0)763E-03!0)736E-03i
Vector sensor 2 0)397E-01!0)394E-0.1i 0)397E-01!0)394E-01i 0)399E-01!0)395E-01i
Vector sensor 3 0)599E-0.1!0)610E-01i 0)599E-01!0)610E-01i 0)603E-01!0)612E-01i

TABLE 2

Second-mode eigenvalues

Mode 2 Theoretical values Defuzzi"ed values MCS means values

Frequency 65)18 Hz 65)1784 Hz 65)1771 Hz
Damping 0)126% 0)125% 0)184%
Vector sensor 1 0)975E-02!0)915E-02i 0)974E-02!0)915E-02i 0)971E-02!0)927E-02i
Vector sensor 2 0)329E-02!0)655E-02i 0)329E-02!0)655E-02i 0)325E-02!0)661E-02i
Vector sensor 3 !0)234E-01#0)345E-01i !0)234E-01#0)345E-01i !0)232E-01#0)348E-01i

FUZZY MODAL PARAMETERS 807



TABLE 3

¹hird-mode eigenvalues

Mode 3 Theoretical values Defuzzi"ed values MCS means values

Frequency 67)33 Hz 67)333 Hz 67)183 Hz
Damping 0)714% 0)714% 0)992%
Vector sensor 1 0)273E-02!0)432E-02i 0)273E-02!0)432E-02i 0)477E-02!0)304E-02i
Vector sensor 2 0)176E-01!0)173E-01i !0.176E-01!0)173E-01i !0)195E-01#0)123E-01i
Vector sensor 3 0)707E-01!0)650E-01i 0)707E-01!0)650E-01i 0)472E-01!0)478E-01i

Figure 11. Fuzzy representation from Monte-Carlo results: - - -, Gaussian distribution;* associated fuzzy number.

TABLE 4

¸eft, crisp and right values for eigenfrequencies (Hz)

Mode Left Crisp Right Uncertainty area

1 36)9218 36)936 36)9503 0)01425
2 65)1629 65)1784 65)1938 0)01545
3 67)026 67)333 67)6399 0)30695
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wanted precision on the mean value or on the standard deviation. Naturally, the precision
is better and the calculus were expensive. Otherwise, a good precision on standard
deviation is more suitable but is also more expensive. In the present application,
fuzzy analysis was achieved in 10 s CPU with 10 a-cuts and Monte-Carlo analysis was
achieved in 6443 s CPU (5500 simulations for a precision of 10~4 on mean value and 10~3

on standard deviation).
A very good correlation between the theoretical and de!uzi"ed identi"cation solutions

are noted.
The fuzzy identi"cation method is also capable of quantifying the uncertainty of

identi"ed eigenvalues and providing an interval of con"dence as shown in Table 4 for the
eigenfrequencies. The uncertainty criterion is the area of fuzzy triangular numbers.
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As it was predictable, note that the most important uncertainty on the eigenfrequencies is
located on the third mode. Indeed, the fuzzy identi"cation was chosen to be applied to this
simple case because the deterministic identi"cation behaviour of this structure is known. In
the deterministic case, identi"cation of the "rst two modes is easy but it is more complex for
identi"cation of the third mode because it is coupled with the second. The fuzzy
identi"cation behaviour clearly illustrates this tendency.

It is the same with the uncertainty area of the other eigenvalues as shown in Figure 12.
The third mode eigensolutions are more sensitive to the uncertain measurement than those
of the two other modes.

Otherwise, one notes a very good correlation of the eigensolutions uncertainty area
between the fuzzy and the MCS approaches.

Although qualitative results are in agreement with the fuzzy identi"cation and MCS
approaches, there are nevertheless di!erences with the quantitative results. Indeed,
Figure 12. Eigensolutions normalized uncertainty ; fuzzy; ; MCS.



Figure 13. Uncertainties ratio fuzzy/SMC: Mode 1; Mode 2; h Mode 3.

810 G. PLESSIS E¹ A¸.
comparison of the fuzzy identi"cation and MCS quantitative results shows that the
uncertainty of the fuzzy identi"cation is under-valued in relation to that of the MCS for
eigenfrequencies and eigendamping while it appears to be overvalued for the eigenvectors.
This phenomenon is underlined by Figure 13 which presents the uncertainties ratio between
the fuzzy identi"cation and the MCS results.

7. CONCLUSION

A modal identi"cation method has been proposed which takes uncertainty on
experimental data into account. This uncertainty is modelled by fuzzy numbers. Di$culties
in solving a fuzzy system have been discussed and an alternative method based on the "rst
order Taylor development was proposed to solve such system. Finally, the application to
a simple system and the comparison with MCS results validated the approach and therefore
provided a degree of con"dence in the modal parameters identi"ed.
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APPENDIX A: VERTEX INTERVAL COMPUTATION

Addition: [aa
L
; aa

R
]#[ba

L
; ba

R
]"[aa

L
#ba

L
; aa

R
#ba

R
]. (A1)

Subtraction: [aa
L
; aa

R
]![ba

L
; ba

R
]"[aa

L
!ba

R
; aa

R
!ba

L
]. (A2)

Multiplication: [aa
L
;aa

R
]][ba

L
; ba

R
]"[min (aa

L
, ba

L
, aa

L
.ba

R
, aa

R
.ba

L
, aa

R
.ba

R
) ;

max (aa
L
, ba

L
, aa

L
.ba

R
, aa

R
.ba

L
, aa

R
.ba

R
)]. (A3)

Division: [aa
L
; aa

R
]/[ba

L
; ba

R
]"[min (aa

L
/ba

L
, aa

L
/ba

R
, aa

R
/ba

L
, aa

R
/ba

R
) ;

max(aa
L
/ba

L
, aa

L
/ba

R
, aa

R
/ba

L
, aa

R
/ba

R
)]. (A4)

APPENDIX B: PERTURBATION INTERVAL COMPUTATION

B.1. COMPLEX INTERVALS

Fuzzy complex numbers are broken up according to their real and imaginary parts. Real
interval arithmetic is then applied separately to the real and imaginary parts.

Addition: AI a#B3 a"(a8 a#ib3 a)#(c8 a#idI a)"C3 a"(e8 a#i fI a ), (B1)

eJ a"a8 a#c8 a , fI a"b3 a#dI a. (B2)

Subtraction: AI a!B3 a"(a8 a#ib3 a )!(c8 a#idI a)"C3 a"(e8 a#i fI a ), (B3)

eJ a"a8 a!c8 a , fI a"b3 a!dI a. (B4)

Multiplication: AI a]B3 a"(a8 a#ib3 a ) . (c8 a#idI a)"C3 a"(e8 a#i fI a), (B5)

eJ a"a8 a .c8 a!b3 a .dI a , fI a"a8 a .dI a#b3 a.c8 a. (B6)

Division: AI a/B3 a"(a8 a#ib3 a)/ (c8 a#idI a)"C3 a"(e8 a#i fI a), (B7)

eJ a"(a8 a.c8 a#b3 a.dI a )/(c8 a2#dI a2) , fI a"(b3 a.c8 a!a8 a.dI a )/(c8 a2#dI a2 ). (B8)
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B.2. REAL INTERVALS

Addition: A3 a#B3 a"(A
c
#DaA)#(B

c
#DaB)"(C

c
#DaC ), (B9)

C
c
"A

c
#B

c
, DaC

L
"DaA

L
#DaB

L
DaC

R
"DaA

R
#DaB

R
. (B10)

Subtraction: A3 a!B3 a"(A
c
#DaA)!(B

c
#DaB)"(C

c
#DaC), (B11)

C
c
"A

c
!B

c
, DaC

L
"DaA

L
!DaB

R
, DaC

R
"DaA

R
!DaB

L
. (B12)

Multiplication: A3 a]B3 a"(A
c
#DaA) )(B

c
#DaB)"(C

c
#DaC), (B13)

C
c
"A

c
)B

c
,

DaC
L
"min (A

c
DaB

L
#B

c
DaA

L
; A

c
DaB

R
#B

c
Da A

L
;

A
c
DaB

L
#B

c
DaA

R
; A

c
DaB

R
#B

c
DaA

R
) ,

DaC
R
"max (A

c
DaB

L
#B

c
DaA

L
; A

c
DaB

R
#B

c
DaA

L
;

A
c
DaB

L
#B

c
DaA

R
; A

c
DaB

R
#B

c
DaA

R
). (B14)

Division: A3 a/B3 a"(A
c
#DaA)/(B

c
#DaB)"(C

c
#DaC), (B15)

C
c
"A

c
/B

c
,

DaC
L
"min [(B

c
DaA

L
!A

c
DaB

L
)/B2

c
; (B

c
DaA

L
!A

c
DaB

R
)/B2

c
;

(B
#
DaA

R
!A

c
DaB

L
)/B2

c
; (B

c
DaA

R
!A

c
DaA

R
)/B2

c
],

DaC
R
"max [(B

c
DaA

L
!A

c
DaB

L
)/B2

c
; (B

c
DaA

L
!A

c
DaB

R
)/B2

c
;

(B
c
DaA

R
!A

c
DaB

L
)/B2

c
; (B

c
DaA

R
!A

c
DaA

R
)/B2

c
]. (B16)
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